MATH204 Differential Equation

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Chapter 2

- Equations with Homogeneous Coefficients
- Solving some differential equations by using appropriate substitution
- Exact Differential Equations

Equations With Homogeneous Coefficients:

Definition

A function $F(x, y)$ is called homogeneous of degree n if

$$
F(t x, t y)=t^{n} F(x, y), \quad \text { for all } t>0 ; t \in \mathbb{R} .
$$

A first-order differential equation form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

is said to be homogeneous if both coefficient functions M and N are homogeneous equations of the same degree.
In other words, (1) is homogeneous if

$$
M(t x, t y)=t^{n} M(x, y) \text { and } N(t x, t y)=t^{n} N(x, y)
$$

Note (1) If $M(x, y)$ and $N(x, y)$ are both homogeneous of the same degree, then $\frac{M(x, y)}{N(x, y)}$ is homogeneous of degree zero. For example $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ is homogeneous of degree zero.
(2) The function $f(x, y)=x-5 y+\sqrt{x^{2}+3 y^{2}}$, is homogeneous of degree one,
(3) The function $F(x, y)=x^{7} \ln (x)-x^{7} \ln (y)$, is homogeneous of degree 7 ,
(4) The functions

$$
f(x, y)=x^{2}+y^{2}+\frac{x+y}{x-y} \quad \text { and } g(x, y)=3 x-2 y+e^{x-y},
$$

are not homogeneous.

General Method

A first order differential equation $\frac{d y}{d x}=f(x, y)$ which can be written in the form

$$
\frac{d y}{d x}=F\left(\frac{y}{x}\right)
$$

is called a homogeneous differential equation.
To solve the homogeneous differential equation:
by letting

$$
u=\frac{y}{x}, \text { that is let } y=x u \Rightarrow \frac{d y}{d x}=x \frac{d u}{d x}+u
$$

the equation then becomes

$$
x \frac{d u}{d x}+u=F(u)
$$

Hence

$$
x \frac{d u}{d x}=F(u)-u
$$

This equation is clearly separable, and can be solved as such.

Example

Solve the following differential equations:
(1) $\left(x^{2}-x y+y^{2}\right) d x-x y d y=0$.
(3) $\frac{d y}{d x}+\frac{3 x y+y^{2}}{x^{2}+x y}=0 ; x \neq 0$ and $y \neq-x$.
(3) $y d x+x\left(\ln \left(\frac{x}{y}\right)-1\right) d y=0, y(1)=e$.

- $x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}} ; x>0$.

Solutions

Let us summarize the steps to follow:

(1) Recognize that your equation is an homogeneous equation; that is, you need to check that $f(t x, t y)=f(x, y)$, meaning that $\mathrm{f}(\mathrm{tx}, \mathrm{ty})$ is independent of the variable t;
(2) Write out the substitution $u=y / x$;
(3) Through easy differentiation, find the new equation satisfied by the new function u. You may want to remember the form of the new equation:

$$
x \frac{d u}{d x}=F(u)-u
$$

(4) Solve the new equation (which is always separable) to find u;
(5) Go back to the old function y through the substitution $y=x u$; (6) If you have an IVP, use the initial condition to find the particular solution.

Exercise

Solve the following differential equations:
(1) $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$.
(2) $(x-y) d x+(2 x+y) d y=0$.
(3) $2 x^{2} y^{\prime}-y(2 x+y)=0$.
(-1 $x d x+\sin ^{2}\left(\frac{x}{y}\right)[y d x-x d y]=0$.

Homogeneous Equations Requiring a Change of Variables:

Solving Some Differential Equations by Using Appropriate Substitution
If we have a differential equation of the form

$$
\frac{d y}{d x}=f(a x+b y)
$$

we use the substitution $u=a x+b y$, then we get

$$
\frac{d u}{d x}=a+b \frac{d y}{d x}
$$

Examples

Solve the following differential equations by using appropriate substitution:
(1) $\frac{d y}{d x}=(-2 x+y)^{2}-7, \quad y(0)=0$.
(2) $\frac{d y}{d x}=\frac{1-4 x-4 y}{x+y} ; y \neq-x$
(3) $\frac{d y}{d x}=\frac{x-y-3}{x+y-1} ; \quad x+y-1 \neq 0$.
(3) $\frac{d y}{d x}=\frac{y(1+x y)}{x(1-x y)} ; x>0, y>0, x y \neq 1$. (Use the substitution $u=x y$)

Solutions

Exact Differential Equations:

A differential equation of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

is called exact, if there is a function F of x and y such that

$$
\begin{equation*}
d F(x, y)=M(x, y) d x+N(x, y) d y=0 . \tag{3}
\end{equation*}
$$

Recall Recall that the total differential of a function $F(x, y)$ is

$$
d F(x, y)=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y .
$$

provided that the partial derivatives of the function F is exists.

Theorem

If $M, N, \frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on a region R in $x y$-plane, then the differential equation (1) is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \quad \text { on } \quad R
$$

Example:

Prove that the following differential equations are exact and find their solutions
(3) $\left(6 x^{2}+4 x y+y^{2}\right) d x+\left(2 x^{2}+2 x y-3 y^{2}\right) d y=0$
(2) $\left[\cos x \ln (2 y-8)+\frac{1}{x}\right] d x+\frac{\sin x}{y-4} d y ; x \neq 0$ and $y>4$.
(3) $\left(e^{2 y}-y \cos x y\right) d x+\left(2 x e^{2 y}-x \cos x y+2 y\right) d y=0$

