MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Power series representations of functions

Consider the power series

$$\sum_{n=1}^{\infty} x^{n-1} = 1 + x + x^2 + \dots + x^{n-1} + \dots$$

It is a geometric series with a=1 and r=x, if |x|<1, then the sum of series $s=\frac{1}{1-x}$, i.e. $1+x+x^2+\cdots+x^{n-1}+\cdots=\frac{1}{1-x}$ if -1< x<1

Remarks:

- We can say that the function $f(x) = \frac{1}{1-x}$ is defined by the power series $\sum_{n=0}^{\infty} x^{n-1}$.
- ② We can say that $\sum_{n=1}^{\infty} x^{n-1}$ is a power series representation for $f(x) = \frac{1}{1-x}$ if |x| < 1.
- We can say $f(x) = \frac{1}{1-x}$ is representation of function as power series

Theorem

Suppose that a power series $\sum_{n=0}^{\infty} a_n x^n$ has a radius of convergence R>0

then the function defined by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 is differentiable

continuous on $\left(-R,R\right)$ and

- $f'(x) = a_1 + 2a_2x + \cdots + na_nx^{n-1} + \ldots$ In other words, the series can be differentiated term by term.
- Note that whether we differentiate or integrate, the radius of convergence is preserved. However, convergence at the endpoints must be investigated every time.

Examples

Find a function representation f of the following power series:

(1):
$$\sum_{n=0}^{\infty} (-1)^n x^n$$
(2):
$$\sum_{n=0}^{\infty} x^n$$
(3):
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$(2): \sum_{n=0}^{\infty} x^n$$

(3):
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Solution:

Examples

Find a power series representation for the following functions:

(1):
$$f(x) = \frac{1}{1-x^2}$$

(1):
$$f(x) = \frac{1}{1-x^2}$$

(2): $f(x) = \frac{1}{1-4x^2}$
(3): $f(x) = \frac{2}{(1+2x)^2}$

(3):
$$f(x) = \frac{2}{(1+2x)^2}$$

Solution:

Note: All the power series considered in previous lecture are called power series centered at 0.

Examples

Find a power series representation for the following functions:

(1):
$$f(x) = \ln(1+x)$$

(2):
$$f(x) = e^x$$

(3):
$$f(x) = \frac{x^3}{4-x^3}$$

(4):
$$f(x) = \frac{5}{3-x}$$
 centered at (a) $c = 1$, (b) $c = 0$

(5):
$$f(x) = \frac{(x-3)^2}{4-2x}$$
 centered at $c = 3$

Solution: