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Integrating Factor

Consider a first order differential equation

M(x, y)dx + N(x, y)dy = 0, (1)

where M , N and ∂M
∂y

and ∂N
∂x

are continuous on a certain region R in

xy-plane. Suppose that the equation (1) is not exact, i.e

∂M

∂y
6=

∂N

∂x
.

Definition: A function µ(x, y) is called an integrating factor of (1) if
the differential equation

(µM)dx + (µN)dy = 0, (2)

is exact, i.e
∂(µM)

∂y
=

∂(µN)

∂x
. (3)
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In other words, if the equation (1) is not exact, we can often make it so
by multiplying throughout by an µ(x, y) and the finding ∂M

∂y
and ∂N

∂x
.

The integrating factors are able to be determined by solving

∂M

∂y
=

∂N

∂x
.

for µ 6= 0 for all (x, y) ∈ R.
The integrating factor will be in one of the following forms

1 µ = µ(x)

2 µ = µ(y)

3 µ = µ(x, y) = xmyn

We can rewrite the equation (3) as follows:

Nµx − Mµy = (My − Nx)µ (4)
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In general, it is very difficult to solve the equation (4). In this section we
will only consider that µ is a one variable function (x or y, not both).
There are two cases:

1 If µ depends on x µx = dµ
dx

. Then µy = 0, so the equation (4)
becomes

1

µ
µx =

1

µ

dµ

dx
=

My − Nx

N
,

so
µ(x) = e

R My−Nx

N
dx.

2 If µ depends on y (µ = µ(y)). Then µx = 0, so the equation (4)
becomes

1

µ
µy =

1

µ

dµ

dy
=

Nx − My

M
,

so
µ(y) = e

R Nx−My

M
dy.
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We summarize that for the differential equation:

M(x, y)dx + N(x, y)dy = 0, (5)

as following

1 If (My − Nx)/N is a function of x only, then the integrating factor
for (5) is

µ(x) = e
R My−Nx

N
dx.

2 If (Nx − My)/M is a function of y only, then the integrating factor
for (5) is

µ(y) = e
R Nx−My

M
dy.
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Examples:

1- Solve the following differential equations:

1 xydx + (2x2 + 3y2 − 20)dy = 0; x 6= 0, y > 0.

2 (4xy + 3y2 − x)dx + x(x + 2y)dy = 0, x(x + 2y) 6= 0.

2- Find m, n such that
µ(x, y) = xmyn,

is an integrating factor of the differential equation

(2y2 + 4x2y)dx + (4xy + 3x3)dy = 0.
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Exercies:

Solve the following differential equations:

1 (x2 + y2 + 1)dx + x(x − 2y)dy = 0.

2 y(x + y + 1)dx + x(x + 3y + 2)dy = 0; y(x + y + 1) 6= 0
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The General Solution of a Linear Differential Equations

Consider the linear differential equation

dy

dx
+ P (x)y = Q(x), (6)

where P and Q are continuous function on the interval (a, b).
The integrating factor of the differential equation (6) is

µ(x) = e
R

P (x)dx.

The general solution of equation (6) is given by

yµ(x) =

∫
µ(x)Q(x)dx + C.

Since µ(x) 6= 0, for x ∈ (a, b), then we can write

yµ(x) =

∫
µ(x)Q(x)dx + C,

y(x) = e−
R

P (x)dx

∫
µ(x)Q(x)dx + Ce−

R

P (x)dx.
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Examples:

Solve the following differential equations:

1 x dy
dx

+ 2y = x3.

2 (1 + x2) dy
dx

+ xy + x3 + x = 0.

3 (y − x + xy cotx)dx + xdy = 0; 0 < y < π with initial value
problem y(π/2) = 0.
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Bernoulli’s equation

The Bernoulli’s equation is a first order differential equation, which can
be written in the form

y′ + P (x)y = Q(x)yn, (7)

where n ∈ R.

1 If n = 0 then the equation (7) is a linear first order differential
equation and we can solve it as we saw before.

2 If n = 1 then the equation (7) is becomes a differential equation
with separable variables, and we can solve it by by separating the
variables.
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3. If n 6= 0 and n 6= 1 then the equation (7) can be written in the form

y−ny′ + P (x)y−n+1 = Q(x).

Now we let u = y−n+1, then we have

du

dx
= (−n + 1)y−n dy

dx

or
u′ = (−n + 1)y−ny′.

1

−n + 1
u′ + P (x)u = Q(x)

or
u′ + (−n + 1)P (x)u = (−n + 1)Q(x),

which is a linear first order differential equation and we can solve it.
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Examples:

Solve the following differential equations:

1
dy
dx

+ 2xy = xe−x2

y3.

2 y(6y2 − x − 1)dx + 2xdy = 0; x 6= 0.

3
dy
dx

− 1
x
y = −2exy2.

4 (2y3 − x3)dx + 2xy2dy = 0; x 6= 0 with IVP y(1) = 1.
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