MATH204 Differential Equation

Dr. Bandar AI-Mohsin

School of Mathematics, KSU

Chapter 2

- Integrating Factor
- The General Solution of a Linear Differential Equations
- Bernoulli's Equation

Integrating Factor

Consider a first order differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

where M, N and $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on a certain region R in $x y$-plane. Suppose that the equation (1) is not exact, i.e

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Definition: A function $\mu(x, y)$ is called an integrating factor of (1) if the differential equation

$$
\begin{equation*}
(\mu M) d x+(\mu N) d y=0, \tag{2}
\end{equation*}
$$

is exact, i.e

$$
\begin{equation*}
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} . \tag{3}
\end{equation*}
$$

In other words, if the equation (1) is not exact, we can often make it so by multiplying throughout by an $\mu(x, y)$ and the finding $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$. The integrating factors are able to be determined by solving

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

for $\mu \neq 0$ for all $(x, y) \in R$.
The integrating factor will be in one of the following forms
(1) $\mu=\mu(x)$
(2) $\mu=\mu(y)$
(3) $\mu=\mu(x, y)=x^{m} y^{n}$

We can rewrite the equation (3) as follows:

$$
\begin{equation*}
N \mu_{x}-M \mu_{y}=\left(M_{y}-N_{x}\right) \mu \tag{4}
\end{equation*}
$$

In general, it is very difficult to solve the equation (4). In this section we will only consider that μ is a one variable function (x or y, not both).
There are two cases:
(3) If μ depends on $x \mu_{x}=\frac{d \mu}{d x}$. Then $\mu_{y}=0$, so the equation (4) becomes

$$
\frac{1}{\mu} \mu_{x}=\frac{1}{\mu} \frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N},
$$

SO

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}
$$

(2) If μ depends on $y(\mu=\mu(y))$. Then $\mu_{x}=0$, so the equation (4) becomes

$$
\frac{1}{\mu} \mu_{y}=\frac{1}{\mu} \frac{d \mu}{d y}=\frac{N_{x}-M_{y}}{M}
$$

so

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}
$$

We summarize that for the differential equation:

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{5}
\end{equation*}
$$

as following
(3) If $\left(M_{y}-N_{x}\right) / N$ is a function of x only, then the integrating factor for (5) is

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x} .
$$

(2) If $\left(N_{x}-M_{y}\right) / M$ is a function of y only, then the integrating factor for (5) is

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y} .
$$

Examples:

1- Solve the following differential equations:
(3) $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0 ; x \neq 0, y>0$.
(3) $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0, x(x+2 y) \neq 0$.

2 - Find m, n such that

$$
\mu(x, y)=x^{m} y^{n},
$$

is an integrating factor of the differential equation

$$
\left(2 y^{2}+4 x^{2} y\right) d x+\left(4 x y+3 x^{3}\right) d y=0 .
$$

Exercies:

Solve the following differential equations:

$$
\begin{aligned}
& \text { (1) }\left(x^{2}+y^{2}+1\right) d x+x(x-2 y) d y=0 \\
& \text { (2) } y(x+y+1) d x+x(x+3 y+2) d y=0 ; y(x+y+1) \neq 0
\end{aligned}
$$

The General Solution of a Linear Differential Equations

Consider the linear differential equation

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{6}
\end{equation*}
$$

where P and Q are continuous function on the interval (a, b). The integrating factor of the differential equation (6) is

$$
\mu(x)=e^{\int P(x) d x} .
$$

The general solution of equation (6) is given by

$$
y \mu(x)=\int \mu(x) Q(x) d x+C
$$

Since $\mu(x) \neq 0$, for $x \in(a, b)$, then we can write

$$
\begin{gathered}
y \mu(x)=\int \mu(x) Q(x) d x+C \\
y(x)=e^{-\int P(x) d x} \int \mu(x) Q(x) d x+C e^{-\int P(x) d x} .
\end{gathered}
$$

Examples:

Solve the following differential equations:
(3) $x \frac{d y}{d x}+2 y=x^{3}$.
(2) $\left(1+x^{2}\right) \frac{d y}{d x}+x y+x^{3}+x=0$.
(3) $(y-x+x y \cot x) d x+x d y=0 ; 0<y<\pi$ with initial value problem $y(\pi / 2)=0$.

Bernoulli's equation

The Bernoulli's equation is a first order differential equation, which can be written in the form

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x) y^{n}, \tag{7}
\end{equation*}
$$

where $n \in \mathbb{R}$.
(1) If $n=0$ then the equation (7) is a linear first order differential equation and we can solve it as we saw before.
(2) If $n=1$ then the equation (7) is becomes a differential equation with separable variables, and we can solve it by by separating the variables.
3. If $n \neq 0$ and $n \neq 1$ then the equation (7) can be written in the form

$$
y^{-n} y^{\prime}+P(x) y^{-n+1}=Q(x) .
$$

Now we let $u=y^{-n+1}$, then we have

$$
\frac{d u}{d x}=(-n+1) y^{-n} \frac{d y}{d x}
$$

or

$$
\begin{gathered}
u^{\prime}=(-n+1) y^{-n} y^{\prime} . \\
\frac{1}{-n+1} u^{\prime}+P(x) u=Q(x)
\end{gathered}
$$

or

$$
u^{\prime}+(-n+1) P(x) u=(-n+1) Q(x),
$$

which is a linear first order differential equation and we can solve it.

Examples:

Solve the following differential equations:
(3) $\frac{d y}{d x}+2 x y=x e^{-x^{2}} y^{3}$.
(3) $y\left(6 y^{2}-x-1\right) d x+2 x d y=0 ; x \neq 0$.
(3) $\frac{d y}{d x}-\frac{1}{x} y=-2 e^{x} y^{2}$.
(($\left.2 y^{3}-x^{3}\right) d x+2 x y^{2} d y=0 ; x \neq 0$ with IVP $y(1)=1$.

