MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Taylor series

Taylor series

If a function has derivatives of all order at x = c, then the series $f(c) + (x - c)f'(c) + \frac{(x - c)^2}{2!}f''(c) + \dots + \frac{(x - c)^n}{n!}f^n(c) + \dots = \sum_{n=0}^{\infty} \frac{(x - c)^n}{n!}f^n(c)$ is called Taylor series for f(x) at x = c.

Maclaurin series

If a function has derivatives of all order at x = 0, then the series $f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^n(0) + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}f^n(0)$ is called Maclaurin series for f(x) at x = 0.

Examples

Find Maclaurin series which represents the following functions for every real number x:

(1):
$$f(x) = e^x$$

(2): $f(x) = \sin(x)$
(3): $f(x) = \cos(x)$
(4): $f(x) = \ln(1+x)$
(5): $f(x) = \tan^{-1}(x)$
(6): $f(x) = \sinh(x)$
(7): $f(x) = \cosh(x)$
(8): $f(x) = x^2 \sin(x)$
(9): $f(x) = \cos(x^2)$
(10) $f(x) = \sin(x)$ at $x = \frac{\pi}{4}$
Solution: