MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Riemann Sum

Let f be a function of two variables defined on region R, and Let $P=\{R_k\}$ be an inner partition of R. A Riemann sum of f for P is any sum of the form

$$\sum_{k} f(u_k, v_k) \Delta A_k \tag{1}$$

where u_k, v_k is a point in R_k and ΔA_k is the area of R_k

Remarks

1- The summation (1) extends over all the subregions R_1, R_2, \ldots, R_n of P.

$$\text{2-}\lim_{\|P\|\to 0}\sum_k f(u_k,v_k)=C \qquad C\in \mathbb{R} \text{, if } f \text{ is continuous on } R.$$

Double Integrals of f over R

If f is a function of two variables that is defined on a region R. The double integral of f over R is

$$\iint_{R} f(x,y) \mathrm{d}A = \lim_{\|P\| \to 0} \sum_{k} f(x_{k}, y_{k}) \Delta A_{k}$$
(2)

provide the limit exists.

Remarks

1- If $f(x,y) \ge 0$ and continuous throughout the region R, then the double integral $\iint_{R} f(x,y) dA$ may be used to find the Volume V of the

solid ${\boldsymbol{Q}}$ that lies under the graph of ${\boldsymbol{z}}=f({\boldsymbol{x}},{\boldsymbol{y}})$ and over R, i.e.

$$V = \iint_{R} f(x, y) dA, \quad f(x, y) \ge 0 \text{ on } R$$

2- If the region R describes the base of a mountain and f(x,y) is the height at point (x,y), then the double integral $\iint_R f(x,y) dA$ is the

Volume of the mountain.

3- If the region R describes the surface of a lake and f(x, y) is the depth of the water at point (x, y), then the double integral $\iint_R f(x, y) dA$ is the

Volume of the water in the lake.

4- If $f(x,y) \leq 0$ and continuous throughout the region R, then the double integral $\iint_R f(x,y) dA$ is the negative of the Volume V of the solid Q that lies over the graph of z = f(x,y) and under R.

Properties of double integrals

•
$$\iint_R \mathbf{c} f(x,y) dA = \mathbf{c} \iint_R f(x,y) dA$$
 for every real number \mathbf{c} .

•
$$\iint_R [f(x,y) \pm g(x,y)] dA = \iint_R f(x,y) dA \pm \iint_R g(x,y) dA.$$

• If Q is the union of two non-over lapping regions R and S
$$\iint_Q f(x,y) dA = \iint_R f(x,y) dA + \iint_S f(x,y) dA$$

• If $f(x,y)\leqslant 0$ throughout the region R, then $\iint\limits_R f(x,y)\mathrm{d} A\leqslant 0$

Evaluation theorem (1) Rectangular Regions

Let f be continuous function on a closed rectangular region R, then $\iint_R f(x,y) dA$ can be evaluated by using an **iterated integral** of the following type

$$\int_{a}^{b} \left[\int_{c}^{d} f(x, y) \mathrm{d}y \right] \mathrm{d}x = \int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d}y \mathrm{d}x$$

or

$$\int_{c}^{d} \left[\int_{a}^{b} f(x, y) \mathrm{d}x \right] \mathrm{d}y = \int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d}x \mathrm{d}y$$

Remarks

1- $\int_{c}^{d} f(x, y) dy$ is partial inegration w.r.t y, regarding x as a constant. 2- $\int_{a}^{b} f(x, y) dx$ is partial inegration w.r.t x, regarding y as a constant. Examples

Evaluate the following integrals:

(1)
$$\int_{1}^{2} \int_{-1}^{2} (12xy^{2} - 8x^{3}) dy dx$$
.
(2) $\int_{-1}^{2} \int_{1}^{2} (12xy^{2} - 8x^{3}) dx dy$.
(3) $\int_{1}^{3} \int_{2}^{4} (40 - 2xy) dx dy$.
(4) $\int_{1}^{2} \int_{1-x}^{\sqrt{x}} x^{2}y dx dy$.

Non-Rectangular Regions

CASE 1 An iterated integral may be defined over the region R_x as shown below

$$\int_{a}^{b} \left[\int_{g(x)}^{h(x)} f(x,y) \mathrm{d}y \right] \mathrm{d}x = \int_{a}^{b} \int_{g(x)}^{h(x)} f(x,y) \mathrm{d}y \mathrm{d}x$$

Non-Rectangular Regions

CASE 2 An iterated integral may be defined over the region R_y as shown below

$$\int_{c}^{d} \left[\int_{p(y)}^{q(y)} f(x,y) \mathrm{d}x \right] \mathrm{d}y = \int_{c}^{d} \int_{p(y)}^{q(y)} f(x,y) \mathrm{d}x \mathrm{d}y$$

Some important graphs

Figure: Some inportant graphs

Examples

Sketch the region bounded by the graphs of :

(1)
$$y = \sqrt{x}$$
 and $y = x^{3}$.
(2) $y = \sqrt{1 - x^{2}}$ and $y = 0$.
for $f(x, y) = x - y$.