MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Double Integrals

Riemann Sum

Let f be a function of two variables defined on region R, and Let $P=\left\{R_{k}\right\}$ be an inner partition of R. A Riemann sum of f for P is any sum of the form

$$
\begin{equation*}
\sum_{k} f\left(u_{k}, v_{k}\right) \Delta A_{k} \tag{1}
\end{equation*}
$$

where u_{k}, v_{k} is a point in R_{k} and ΔA_{k} is the area of R_{k}

Double Integrals

Remarks

1- The summation (1) extends over all the subregions $R_{1}, R_{2}, \ldots, R_{n}$ of P.
2- $\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(u_{k}, v_{k}\right)=C \quad C \in \mathbb{R}$, if f is continuous on R.
Double Integrals of f over R
If f is a function of two variables that is defined on a region R. The double integral of f over R is

$$
\begin{equation*}
\iint_{R} f(x, y) \mathrm{d} A=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(x_{k}, y_{k}\right) \Delta A_{k} \tag{2}
\end{equation*}
$$

provide the limit exists.

Double Integrals

Remarks

1- If $f(x, y) \geqslant 0$ and continuous throughout the region R, then the double integral $\iint_{R} f(x, y) \mathrm{d} A$ may be used to find the Volume V of the solid Q that lies under the graph of $z=f(x, y)$ and over R, i.e.

$$
V=\iint_{R} f(x, y) \mathrm{d} A, \quad f(x, y) \geqslant 0 \text { on } R
$$

2- If the region R describes the base of a mountain and $f(x, y)$ is the height at point (x, y), then the double integral $\iint_{R} f(x, y) \mathrm{d} A$ is the
Volume of the mountain.
3- If the region \mathbf{R} describes the surface of a lake and $f(x, y)$ is the depth of the water at point (x, y), then the double integral $\iint_{R} f(x, y) \mathrm{d} A$ is the Volume of the water in the lake. 4- If $f(x, y) \leqslant 0$ and continuous throughout the region \mathbf{R}, then the double integral $\iint_{R} f(x, y) \mathrm{d} A$ is the negative of the Volume V of the solid Q that lies over the graph of $z=f(x, y)$ and under R.

Properties of double integrals

- $\iint_{R} \mathbf{c} f(x, y) \mathrm{d} A=\mathbf{c} \iint_{R} f(x, y) \mathrm{d} A$ for every real number \mathbf{c}.
- $\iint_{R}[f(x, y) \pm g(x, y)] \mathrm{d} A=\iint_{R} f(x, y) \mathrm{d} A \pm \iint_{R} g(x, y) \mathrm{d} A$.
- If Q is the union of two non-over lapping regions R and S,

$$
\iint_{Q} f(x, y) \mathrm{d} A=\iint_{R} f(x, y) \mathrm{d} A+\iint_{S} f(x, y) \mathrm{d} A
$$

- If $f(x, y) \leqslant 0$ throughout the region R, then $\iint_{R} f(x, y) \mathrm{d} A \leqslant 0$

Evaluation theorem (1) Rectangular Regions

Let f be continuous function on a closed rectangular region R, then $\iint_{R} f(x, y) \mathrm{d} A$ can be evaluated by using an iterated integral of the following type

$$
\int_{a}^{b}\left[\int_{c}^{d} f(x, y) \mathrm{d} y\right] \mathrm{d} x=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

or

$$
\int_{c}^{d}\left[\int_{a}^{b} f(x, y) \mathrm{d} x\right] \mathrm{d} y=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Double Integrals

Remarks

1- $\int_{c}^{d} f(x, y) \mathrm{d} y$ is partial inegration w.r.t y, regarding x as a constant.
2- $\int_{a}^{b} f(x, y) \mathrm{d} x$ is partial inegration w.r.t x, regarding y as a constant.

Examples

Evaluate the following integrals:
(1) $\int_{1}^{2} \int_{-1}^{2}\left(12 x y^{2}-8 x^{3}\right) \mathrm{d} y \mathrm{~d} x$.
(2) $\int_{-1}^{2} \int_{1}^{2}\left(12 x y^{2}-8 x^{3}\right) \mathrm{d} x \mathrm{~d} y$.
(3) $\int_{1}^{3} \int_{2}^{4}(40-2 x y) \mathrm{d} x \mathrm{~d} y$.
(4) $\int_{1}^{2} \int_{1-x}^{\sqrt{x}} x^{2} y \mathrm{~d} x \mathrm{~d} y$.

Double Integrals

Non-Rectangular Regions

CASE 1 An iterated integral may be defined over the region R_{x} as shown below

$$
\int_{a}^{b}\left[\int_{g(x)}^{h(x)} f(x, y) \mathrm{d} y\right] \mathrm{d} x=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

Double Integrals

Non-Rectangular Regions

CASE 2 An iterated integral may be defined over the region R_{y} as shown below

$$
\int_{c}^{d}\left[\int_{p(y)}^{q(y)} f(x, y) \mathrm{d} x\right] \mathrm{d} y=\int_{c}^{d} \int_{p(y)}^{q(y)} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Double Integrals

Some important graphs

Figure: Some inportant graphs

Double Integrals

Examples

Sketch the region bounded by the graphs of :
(1) $y=\sqrt{x}$ and $y=x^{3}$.
(2) $y=\sqrt{1-x^{2}}$ and $y=0$.
for $f(x, y)=x-y$.

