MATH204 Differential Equation

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Linear differential equations of higher order

Chapter 4

- General Solution of homogeneous linear differential equations 1-Initial-Value Problem (IVP)
2- Boundary-Value Problem (BVP)
3- Existence and Uniqueness of the Solution to an IVP
4- Linear Dependence and Independence of Functions
5- Criterion of Linearly Independent Solutions
6- Fundamental Set of Solutions
- Reduction of order Method (when one solution is given).

General Solution of homogeneous linear DEs

Definition

The general linear differential equations of order n is an equation that can be written

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=R(x) \tag{1}
\end{equation*}
$$

where $a_{n}(x), a_{n-1}(x), a_{1}(x)$ and $a_{0}(x)$ are functions of $x \in \mathrm{I}=(a, b)$, and they are called coefficients.
Equation (1) is called homogeneous linear differential equation if the function $R(x)$ is zero for all $x \in(a, b)$.
If $R(x)$ is not equal to zero on I, the equation (1) is called non-homogeneous linear differential equation.

Initial-Value Problem (IVP)

An n-th order initial-value problem associate with (1) takes the form: Solve:

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=R(x)
$$

subject to:

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, y^{\prime \prime}\left(x_{0}\right)=y_{2}, \ldots, y^{n-1}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

Here (2) is a set of initial conditions.

Boundary-Value Problem (BVP)

Remark (Initial vs. Boundary Conditions):

Initial Conditions: all conditions are at the same $x=x_{0}$.
Boundary Conditions: conditions can be at different x.

Remark (Number of Initial/Boundary Conditions):

Usually a n-th order ODE requires n initial/boundary conditions to specify an unique solution.

Remark (Order of the derivatives in the conditions):

Initial/boundary conditions can be the value or the function of 0 -th to ($n-1$)-th order derivatives, where n is the order of the ODE.

000000

Example (Second-Order ODE)

Consider the following second-order ODE

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d^{\prime} y}{d x^{\prime}}+a_{0}(x) y=R(x) \tag{3}
\end{equation*}
$$

- IVP: solve (3) s.t. $y\left(x_{0}\right)=y_{0} ; y^{\prime}\left(x_{0}\right)=y 1$.
- BVP: solve (3) s.t. $y(a)=y_{0} ; y(b)=y 1$.

Existence and Uniqueness of the Solution to an IVP

Theorem:

For the given linear differential equations of order n

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=R(x) \tag{4}
\end{equation*}
$$

which is normal on an interval I. Subject to

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, y^{\prime \prime}\left(x_{0}\right)=y_{2}, \ldots, y^{n-1}\left(x_{0}\right)=y_{n-1} \tag{5}
\end{equation*}
$$

If $a_{n}(x), a_{n-1}(x), \ldots, a_{0}(x)$ and $R(x)$ are all continuous on an interval $I, a_{n}(x)$ is not a zero function on I, and the initial point $x_{0} \in I$, then the above IVP has a unique solution in I.

Example (1) Discuss the Existence of unique solution of IV P

$$
\left\{\begin{aligned}
\left(x^{2}+1\right) y^{\prime \prime}+x^{2} y^{\prime}+5 y & =\cos (x) \\
y(3)=2, \quad y^{\prime}(3) & =1
\end{aligned}\right.
$$

Solution The functions

$$
a_{2}(x)=x^{2}+1, a_{1}(x)=x^{2}, a_{0}(x)=5 .
$$

and

$$
R(x)=\cos (x)
$$

are continuous on $I=\mathbb{R}=(-\infty,+\infty)$ and $a_{2}(x) \neq 0$ for all $x \in \mathbb{R}$, the point $x_{0}=3 \in I$. Then the previous Theorem assures that the $I V P$ has a unique solution on \mathbb{R}.

Example(2) Find an interval I for which the initial values problem (IVP)

$$
\left\{\begin{array}{c}
x^{2} y^{\prime \prime}+\frac{x}{\sqrt{2-x}} y^{\prime}+\frac{2}{\sqrt{x}} y=0 \\
y(1)=0 \quad, \quad y^{\prime}(1)=1
\end{array}\right.
$$

has a unique solution around $x_{0}=1$.
Solution The function

$$
a_{2}(x)=x^{2}
$$

is continuous on \mathbb{R} and $a_{2}(x) \neq 0$ if $x>0$ or $x<0$. But $x_{0}=1 \in$ $I_{1}=(0, \infty)$. The function

$$
a_{1}(x)=\frac{x}{\sqrt{2-x}}
$$

is continuous on $I_{2}=(-\infty, 2)$ and the function

$$
a_{0}(x)=\cdot \frac{2}{\sqrt{x}}
$$

is continuous on $I_{1}=(0, \infty)$

Then the $(I V P)$ has a unique solution on $I_{1} \cap I_{2}=(0,2)=I$. We can take any interval $I_{3} \subset(0,2)$ such that $x_{0}=1 \in I_{3}$. So I is that the largest interval for which the (IVP)has a unique solution.

Example(3) Find an interval I for which the IVP

$$
\left\{\begin{array}{c}
(x-1)(x-3) y^{\prime \prime}+x y^{\prime}+y=x^{2} \\
y(2)=1 \quad, \quad y^{\prime}(2)=0
\end{array}\right.
$$

has a unique solution about $x_{0}=2$.
Solution The functions

$$
a_{2}(x)=(x-1)(x-3), a_{1}(x)=x, a_{0}(x)=1, R(x)=x^{2}
$$

are continuous on \mathbb{R}. But $a_{2}(x) \neq 0$ if $x \in(-\infty, 1)$ or $x \in(1,3)$ or $x \in(3, \infty)$. As $x_{0}=2$ so we take $I=(1,3)$. Then the IVP has a unique solution on $I=(1,3)$

Linear Dependence and Independence of Functions

Definition:

A set of functions $\left\{f_{1}(x), f_{2}(x) \ldots, f_{n}(x)\right\}$ are linearly dependent on an interval I if $\exists c_{1}, c_{2}, \ldots, c_{n}$ not all zero i.e.
$\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq(0,0, \ldots, 0)$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0, \quad \forall x \in I
$$

that is, the linear combination is a zero function.
If the set of functions is not linearly dependent, it is linearly independent,
i.e. when $c_{1}, c_{2}, \ldots, c_{n}$ all zero i.e. $\left(c_{1}, c_{2}, \ldots, c_{n}\right)=(0,0, \ldots, 0)$.

Examples:

1- Show that $f_{1}(x)=\cos (2 x), f_{2}(x)=1, f_{3}(x)=\cos ^{2}(x)$ are linearly dependent on \mathbb{R}.
2- Show that $f_{1}(x)=1, f_{2}(x)=\sec ^{2}(x)$ and $f_{3}(x)=\tan ^{2}(x)$ are linearly dependent on ($0, \frac{\pi}{2}$).
3- Show that $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$ are linearly independent on $I=[-1,1]$.
4- show that $f_{1}(x)=\sin (x), f_{2}(x)=\sin (2 x)$ are linearly independent on $I=[0, \pi)$.
5- Show that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x|x|$ are
(i) linearly dependent on $[0,1]$
(ii) linearly independent on $[-1,1]$

Criterion of Linearly Independent Solutions

Consider the homogeneous linear n-th order DE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Given n solutions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$, we would like to test if they are independent or not.

Note: In Linear Algebra, to test if n vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are linearly independent, we can compute the determinant of the matrix.

$$
\mathrm{V}:=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

If the determinant of $\mathrm{V}=0$, they are linearly dependent; if the determinant of $V \neq 0$, they are linearly independent.

Definition

For n functions $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ which are $n-1$ times differentiable on an interval I, the Wronskian $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ as a function on I is defined by

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & \ldots & f_{n}^{\prime \prime} \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}^{n-1} & f_{2}^{n-1} & \ldots & f_{n}^{n-1}
\end{array}\right|
$$

To test the linear independence of n solutions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ to

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{6}
\end{equation*}
$$

we can use the following theorem.

Theorem

Let $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be n solutions to the homogeneous linear DE (6) on an interval I. They are linearly independent on I

$$
\Longleftrightarrow W\left(f_{1}, f_{2}, \ldots, f_{n}\right):=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & \ldots & f_{n}^{\prime \prime} \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}^{n-1} & f_{2}^{n-1} & \ldots & f_{n}^{n-1}
\end{array}\right| \neq 0 .
$$

Examples

1- Prove that $f_{1}(x)=x^{2}, f_{2}(x)=x^{2} \ln (x)$ are linearly independent on (0 , ∞).
2- It is easy to see that the functions $y_{1}=x, y_{2}=x^{2}$, and $y_{3}=x^{3}$ are solutions of the differential equation

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0
$$

Show that y_{1}, y_{2} and y_{3} are linearly independent on $(0, \infty)$.

Fundamental Set of Solutions

Definition

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{7}
\end{equation*}
$$

Any set $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ of n linearly independent solutions to the homogeneous linear n-th order DE (7) on an interval I is called a fundamental set of solutions.

Theorem

Let $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be a fundamental set of solutions to the homogeneous linear n-th order $\mathrm{DE}(7)$ on an interval I. Then the general solution to (7) is

$$
y(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x),
$$

where $\left\{c_{i} \mid(i=1,2, \ldots, n)\right\}$ are arbitrary constants.

Examples

1- Verify that $y_{1}=e^{2 x}$ and $y_{2}=e^{-3 x}$ form a fundamental set of solutions of the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

and find the general solution.
2- It is easy to see that the functions

$$
y_{1}=e^{x}, y_{2}=e^{2 x}, \quad \text { and } y_{3}=e^{3 x}
$$

are solutions of the differential equation

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0 .
$$

Find the general solution of the differential equation.
3- Prove that

$$
y_{1}=x^{3} e^{x}, \text { and } y_{2}=e^{x}
$$

are solutions of the differential equation

$$
x y^{\prime \prime}-2(x+1) y^{\prime}+(x+2) y=0
$$

where $x>0$. Find also the general solution of the differential equation.

Reduction of order Method (when one solution is given)

It is employed when one solution $y_{1}(x)$ is known and a second linearly independent solution $y_{2}(x)$ is desired. The method also applies to n-th order equations.
Suppose that $y_{1}(x)$ is a non-zero solution of the equation

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0, \tag{8}
\end{equation*}
$$

where $a_{0}(x), a_{1}(x)$ and $a_{2}(x)$ are continuous functions defined on interval I sauch that $a_{2}(x) \neq 0$ for all $x \in I$.
The method of reduction of order is used to obtain a second linearly independent $y_{2}(x)$ solution to this differential equation (8) using our one known solution.

We suppose that the solution of (8) is in the form

$$
y=u(x) y_{1}
$$

where u is a function of x and which will be determined and satisfies a linear second-order differential equation (8) by using the following method

$$
y=u(x) y_{1} \Rightarrow y^{\prime}=u^{\prime} y_{1}+y_{1}^{\prime} u \Rightarrow y^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+y_{1}^{\prime \prime} u
$$

It is best to describe the procedure with a concrete example.

Example (1) If

$$
y_{1}=\frac{\sin x}{\sqrt{x}} .
$$

is a solution of the differential equation

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0 \text { on } 0<x<\pi .
$$

then find the general solution of the differential equation..
Solution The solution of the differential equation is of the form $y=u(x) y_{1}$ or

$$
y=\frac{\sin x}{\sqrt{x}} u=(\sin x)(x)^{\frac{-1}{2}} u
$$

hence

$$
\begin{aligned}
y^{\prime}= & (\cos x)(x)^{\frac{-1}{2}} u-\frac{1}{2} \sin x(x)^{\frac{-3}{2}} u+\sin x(x)^{\frac{-1}{2}} u^{\prime} \\
y^{\prime \prime}= & -\sin x(x)^{\frac{-1}{2}} u-\cos x(x)^{\frac{-3}{2}} u+2 \cos x(x)^{\frac{-1}{2}} u^{\prime} \\
& +\frac{3}{4} \sin x(x)^{\frac{-5}{2}} u-\sin x(x)^{\frac{-3}{2}} u^{\prime}+\sin x(x)^{\frac{-1}{2}} u^{\prime \prime}
\end{aligned}
$$

we substitute y, y^{\prime}, and $y^{\prime \prime}$ in the arbitrary constant we obtain

$$
4 x^{\frac{3}{2}} \sin x u^{\prime \prime}+\left(8 x^{\frac{3}{2}} \cos x\right) u^{\prime}=0
$$

hence

$$
\sin x u^{\prime \prime}+2 \cos x u^{\prime}=0
$$

To solve this differential equation we put $w=u^{\prime}$, then we have $w^{\prime}=u^{\prime \prime}$. Then

$$
\int \frac{d w}{w} d x+\int \frac{2 \cos x}{\sin x} d x=0
$$

hence

$$
u^{\prime}=w=\frac{c_{1}}{\sin ^{2} x}
$$

where $c_{1} \neq 0$ is an arbitrary constant. So we have $u=-c_{1} \cot x+c_{2}$, hence

$$
y=y_{1} u=\frac{\sin x}{\sqrt{x}}\left(-c_{1} \cot x+c_{2}\right)
$$

or

$$
y=c_{3} \frac{\cos x}{\sqrt{x}}+c_{2} \frac{\sin x}{\sqrt{x}}
$$

finally we have

$$
y=c_{2} y_{1}+c_{3} y_{2}
$$

where $c_{3}=-c_{1}$ and c_{2} are arbitrary constants, is the general solution of the differential equation and we can prove that

$$
y_{1}=\frac{\sin x}{\sqrt{x}} \text { and } y_{2}=\frac{\cos x}{\sqrt{x}}
$$

are linearly independent on solutions $(0, \pi)$.

General case of Equation (8)

Equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

can be written as the form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{9}
\end{equation*}
$$

where

$$
p(x)=\frac{a_{1}(x)}{a_{2}(x)}
$$

and

$$
q(x)=\frac{a_{0}(x)}{a_{2}(x)}
$$

Also, let us suppose that y_{1} is a known solution of (9) on I and $y_{1}(x) \neq 0$ for all $x \in I$.
Thus the second solution of (9) y_{2} can be given from

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x \tag{10}
\end{equation*}
$$

