MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Area and Volume

Volume:

In the previous study, we saw that if $f(x, y) \geqslant 0$ and f is continuous, then the double integral

$$
\begin{equation*}
\iint_{R} f(x, y) \mathrm{d} A \tag{1}
\end{equation*}
$$

gives the volume of the solid that lies under the graph of $z=f(x, y)$ and over a region R in the $x y$-plane.

Area:

The double integral (1) can be used to find the area of the region R if $f(x, y)=1$ which becomes

$$
\begin{equation*}
\iint_{R} \mathrm{~d} A \tag{2}
\end{equation*}
$$

Area and Volume

Double Integral for finding area:
Formula 1 If a region R_{x} is defined by $a \leqslant x \leqslant b$ and $g(x) \leqslant y \leqslant h(x)$, where $g(x), h(x)$ are continuous on $[a, b]$, then the area A of R_{x} is given by

$$
A=\int_{a}^{b} \int_{g(x)}^{h(x)} \mathrm{d} y \mathrm{~d} x
$$

Area and Volume

Formula 2 If a region R_{y} is defined by $c \leqslant y \leqslant d$ and $p(y) \leqslant x \leqslant q(y)$, where $p(y), q(y)$ are continuous on $[c, d]$, then the area A of R_{y} is given by

$$
\int_{c}^{d} \int_{p(y)}^{q(y)} \mathrm{d} x \mathrm{~d} y
$$

Double Integrals

Examples

Sketch the region bounded by the graphs of :
(1) $y=x^{2}$ and $y=2 x$. Evaluate $\iint_{R}\left(x^{3}+4 y\right) d A$ using R_{x} region and
R_{y} region.
(2) $y=\sqrt{x}$ and $y=\sqrt{3 x-18}$ and $y=0$ using R_{x} region and R_{y} region.
(3) reverse the order of the integration and evaluate
$\int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos x^{5} d x d y$.
(4) Find the area A of the region in the $x y$-plane bounded by the graph of $x=y^{3}, x+y=2$ and $y=0$
(4) Find the volume of the solid that lies under the graph of
$z=4 x^{2}+y^{2}$ and over the region in the xy -plane bounded by $x+y=2$,
$x=0, y=0$ and $z=0$.

