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Linear differential equations of higher order

Chapter 4

General Solution of homogeneous linear differential equations
1-Initial-Value Problem (IVP)
2- Boundary-Value Problem (BVP)
3- Existence and Uniqueness of the Solution to an IVP
4- Linear Dependence and Independence of Functions
5- Criterion of Linearly Independent Solutions
6- Fundamental Set of Solutions

Reduction of order Method (when one solution is given).

Homogeneous Linear Differential Equations with Constant
Coefficients.

Cauchy-Euler Differential Equation.

General Solution of nonhomogeneous linear differential equations
1-Undetermined coefficients
2- Variation of Parameters

Dr. Bandar Al-Mohsin MATH204 Differential Equation



Homogeneous Linear Differential Equations with Constant Coefficients Cauchy-Euler Differential Equation General Solutions of Nonhomogeneous Linear Differential

Homogeneous Linear Differential Equations with Constant

Coefficients

The linear differential equations with Constant Coefficients has the
general form

an

dny

dxn
+ an−1

dn−1y

dxn−1
+ · · · + a1

dy

dx
+ a0y = 0, (1)

which is a homogeneous linear DE with constant real coefficients,
where each coefficient ai, 1 ≤ i ≤ n is real constant and an 6= 0.

Definition

The polynomial

f(m) = anmn + an−1m
n−1 + · · · + a1m + a0, (2)

is called the characteristic polynomial for equation (1), and f(m) = 0 is
called the characteristic equation of the linear differential equations with
constant coefficients (1).
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We conclude that if m is a root of equation (2), then

y = emx

is a solution of the differential equation (1). Also, Equation (2) has n

roots.
Let us summarize the method to solve the differential equation (1):
(1) If all the roots of the characteristic equation are real roots then:
(i) If the roots are distinct (i.e. m1 6= m2 6= m3 6= · · · 6= mn), then the
solution of the differential equation (1) is given by

y = c1e
m1x + c2e

m2x + · · · + cnemnx

(ii) If the roots are equal (i.e. m1 = m2 = m3 = · · · = mn) (i.e.
m = mi is a root of multiplicity n), then the solution of the differential
equation (1) is given by

y = c1e
mx + c2xemx + c3x

2emx + · · · + cnxn−1emx

y = (c1 + c2x + c3x
2 + · · · + cnxn−1)emx
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Examples

1- Solve the differential equation

y′′ − y = 0.

2- Find the general solution of the differential equation

y′′′ − 6y′′ + 11y′ − 6y = 0 .

3- Solve the differential equation

y′′ − 2y′ + y = 0.

4- Solve the differential equation

y′′′ − 3y′′ + 3y′ − y = 0
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Now we see the second case
(2) If the characteristic equation has complex conjugate roots such as

m = α ∓ iβ

then he solution of the differential equation of second order is given by

y = c1e
αx cos(βx) + c2e

αx sin(βx)

Remember:

1)
√
−1 = i

2) x =
−b ∓

√
b2 − 4ac

2a

to find the roots of Quadratic equation

ax2 + bx + c = 0
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Examples

1- Solve the differential equation

y′′ + 4y′ + 5y = 0.

2- Solve the differential equation

y(5) − 3y(4) + 4y′′′ − 4y′′ + 3y′ − y = 0.

3- Solve the initial value problem (IV P )

{

y′′ + y′ + y = 0

y(0) = 1 , y′(0) =
√

3.
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Cauchy-Euler Differential Equation

A Cauchy-Euler differential equation is in the form

anxn dny

dxn
+ an−1x

n−1 dn−1y

dxn−1
+ · · · + a1x

dy

dx
+ a0y = 0, (3)

where each coefficient ai, 1 ≤ i ≤ n are constants and an 6= 0 i.e. the
coefficient anxn should never be zero. Equation (3) is on the interval
either (0,∞) or (−∞, 0).
Euler differential equation is probably the simplest type of linear
differential equation with variable coefficients.
The most common Cauchy-Euler equation is the second-order equation,
appearing in a number of physics and engineering applications, such as
when solving Laplace’s equation in polar coordinates. It is given by the
equation

x2 d2y

dx2
+ ax

dy

dx
+ by = 0 (4)
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To solve the Cauchy-Euler differential equation, we assume that y = xm,
where x > 0 and m is a root of a polynomial equation.
Example(1) Solve the Cauchy-Euler differential equation

x2 d2y

dx2
+ ax

dy

dx
+ by = 0.

Solution We substitute

y = xm =⇒ y′ = mxm−1 =⇒ y′′ = m(m − 1)xm−2

in the differential equation, we obtain

x2[m(m − 1)xm−2] + ax[mxm−1] + bxm = 0

xm(m2 − m) + amxm + bxm = 0

xm[(m2 − m) + am + b] = 0

xm[m2 + (1 − a)m + b] = 0.

Since xm 6= 0, then we have

m2 + (1 − a)m + b = 0
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We then can solve for m. There are three particular cases of interest:
Case 1: Two distinct roots, m1 and m2. Thus, the solution is given by

y = c1x
m1 + c2x

m2 .

Case 2: One real repeated root, m. Thus, the solution is given by

y = c1x
m ln(x) + c2x

m.

Case 3: Complex roots, α ± iβ. Thus, the solution is given by

y = c1x
α cos (β ln(x)) + c2x

α sin (β ln(x)) .
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Example (2) Solve the Euler differential equation

2x2y′′ − 3xy′ − 3y = 0. (5)

For x > 0.
Solution ) We substitute

y = xm =⇒ y′ = mxm−1 =⇒ y′′ = m(m − 1)xm−2

in the differential equation, we obtain

2x2[m(m − 1)xm−2] − 3x[mxm−1] − xm = 0

xm(2m2 − 2m) − 3mxm − 3xm = 0

xm[2m2 − 2m − 3m − 3] = 0

xm[2m2 − 5m − 3] = 0.
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Since xm 6= 0, then we have

2m2 − 5m− 3 = 0

So the roots of this equation are m1 = − 1
2 , m2 = 3 .Thus, from case 1

we have the solution is given by

y(x) = c1x
− 1

2 + c2x
3.

which is the general solution.
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Example (3)
Find the general of the differential equation

x2y′′ − 3xy′ + 13y = 0 ; x > 0.

Solution Substituting y = xm in the equation, we obtain

m(m − 1) − 3m + 13 = m2 − 4m + 13 = 0.

Then we have two complex roots m = 3 ∓ 3i (case 3), hence the the
general of the differential equationis

y = c1x
3 cos(3 lnx) + c2x

3 sin(3 lnx) ; x > 0.

If we suppose x < 0, then the general of the differential equation is

y = c1(−x)3 cos(3 ln(−x)) + c2(−x)3 sin(3 ln(−x)) ; x < 0.
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Example (4). Find the general solution of the differential equation

x4y(4) − 5x3y′′′ + 3x2y′′ − 6xy′ + 6y = 0 ; x > 0.

Solution Substituting y = xm in the equation, we obtain

m(m−1)(m−2)(m−3)−5m(m−1)(m−2)+3m(m−1)−6m+6 = 0.

This implies that

(m − 1)(m − 2)(m2 − 8m + 3) = 0.

The roots of this equation are m = 1 , m = 2 , and m = 4 ∓
√

13 , then
the general solution of the differential equation is

y = c1x + c2x
2 + c3x

4+
√

13 + c4x
4−

√
13 ; x > 0.
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Example (5) Find the general solution of the differential equation

x5y(5) − 2x3y′′′ + 4x2y′′ = 0 ; x < 0.

Solution Substituting y = xm in the equation, we obtain

m(m− 1)(m− 2)(m− 3)(m− 4)− 2m(m− 1)(m− 2)+4m(m− 1) = 0,

m(m − 1)(m3 − 9m2 + 24m− 20) = m(m − 1)(m − 2)2(m − 5) = 0.

So the roots of this equation are m = 0 , m = 1 , m = 2 repeated two
times and m = 5 , then the general of the differential equation is

y = c1 + c2(−x) + c3(−x)2 + c4(−x)2 ln(−x) + c5(−x)5.
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General Solutions of Nonhomogeneous Linear DE

Nonhomogeneous linear n-th order ODE takes the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a1(x)

dy

dx
+ a0(x)y = g(x), (6)

where an(x), an−1(x), a1(x) and a0(x) are functions of x ∈ I = (a, b),
such that an(x) 6= 0 for all x ∈ I, and g(x) 6= 0.

Idea:

Find the general solution yc to the homogeneous equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a1(x)

dy

dx
+ a0(x)y = 0

Find a solution yp to the nonhomogeneous equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a1(x)

dy

dx
+ a0(x)y = g(x)

The general solution y = yc + yp.
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Undetermined coefficients

Let us take an example
Examples
1- Find the general solution of the differential equation :

y′′ − y = −2x2 + 5 + 2ex. (1)

2- Find only the form of particular solution of the differential equation :

y′′ − 2y′ − 3 = 3x2ex + e2x + x sin(x) + (2 + 3x). (2)

3- Find the general solution of the differential equation :

y′′ − 2y′ + y = 2ex − 3e−x. (3)
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Variation of Parameters

This method is used to solve to determine the particular solution yp of
nonhomogeneous differential equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a1(x)

dy

dx
+ a0(x)y = g(x), (7)

If we have the nonhomogeneous differential equation

a2(x)y′′ + a1(x)y′ + a0(x)y = g(x), (8)

which has the particular solution

yp = y1u1 + y2u2,

where y1 and y2 are the first and the second solution of the
homogeneous differential equation, respectively.

a2(x)y′′ + a1(x)y′ + a0(x)y = 0 (9)
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Here we will explain the method to find u1 and u2. So, if we have
y1 & y2 , then we will determine as below

W (x, y1, y2) =

∣

∣

∣

∣

y1 y2

y′
1 y′

2

∣

∣

∣

∣

= y1y
′
2 − y2y

′
1,

W1 =

∣

∣

∣

∣

0 y2

g(x) y′
2

∣

∣

∣

∣

= −y2g(x),

W2 =

∣

∣

∣

∣

y1 0
y′
1 g(x)

∣

∣

∣

∣

= y1g(x).

Thus,

u′
1 =

W1

W

and

u′
2 =

W2

W
.
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Examples
1- Solve the differential equation

y′′ + y = cscx ; 0 < x < π.

2- Solve the differential equation

y′′ − 4y′ + 4y = (x + 1)e2x.

3- Solve the Differential equation

y′′ − 3y′ + 2y =
1

1 + e−x
.

4- Find the general solution of the differential equation

y′′′ + y′ = tanx ; 0 < x <
π

2
.

5- Find the solution of the initial value problem (IV P )

{

2x2y′′ + xy′ − 3y = x−3 ; x > 0
y(1) = 1 , y′(1) = −1.
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