MATH204 Differential Equation

Dr. Bandar Al-Mohsin
School of Mathematics, KSU

Linear differential equations of higher order

Chapter 4

- General Solution of homogeneous linear differential equations 1-Initial-Value Problem (IVP)
2- Boundary-Value Problem (BVP)
3- Existence and Uniqueness of the Solution to an IVP
4- Linear Dependence and Independence of Functions
5- Criterion of Linearly Independent Solutions
6- Fundamental Set of Solutions
- Reduction of order Method (when one solution is given).
- Homogeneous Linear Differential Equations with Constant Coefficients.
- Cauchy-Euler Differential Equation.
- General Solution of nonhomogeneous linear differential equations 1-Undetermined coefficients
2- Variation of Parameters

Homogeneous Linear Differential Equations with Constant Coefficients

The linear differential equations with Constant Coefficients has the general form

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0 \tag{1}
\end{equation*}
$$

which is a homogeneous linear DE with constant real coefficients, where each coefficient $a_{i}, 1 \leq i \leq n$ is real constant and $a_{n} \neq 0$.

Definition

The polynomial

$$
\begin{equation*}
f(m)=a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0} \tag{2}
\end{equation*}
$$

is called the characteristic polynomial for equation (1), and $f(m)=0$ is called the characteristic equation of the linear differential equations with constant coefficients (1).

We conclude that if m is a root of equation (2), then

$$
y=e^{m x}
$$

is a solution of the differential equation (1). Also, Equation (2) has n roots.
Let us summarize the method to solve the differential equation (1):
(1) If all the roots of the characteristic equation are real roots then:
(i) If the roots are distinct (i.e. $m_{1} \neq m_{2} \neq m_{3} \neq \cdots \neq m_{n}$), then the solution of the differential equation (1) is given by

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\cdots+c_{n} e^{m_{n} x}
$$

(ii) If the roots are equal (i.e. $m_{1}=m_{2}=m_{3}=\cdots=m_{n}$) (i.e. $m=m_{i}$ is a root of multiplicity n), then the solution of the differential equation (1) is given by

$$
\begin{gathered}
y=c_{1} e^{m x}+c_{2} x e^{m x}+c_{3} x^{2} e^{m x}+\cdots+c_{n} x^{n-1} e^{m x} \\
y=\left(c_{1}+c_{2} x+c_{3} x^{2}+\cdots+c_{n} x^{n-1}\right) e^{m x}
\end{gathered}
$$

Examples

1- Solve the differential equation

$$
y^{\prime \prime}-y=0 .
$$

2- Find the general solution of the differential equation

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0 .
$$

3- Solve the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0 .
$$

4- Solve the differential equation

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Now we see the second case
(2) If the characteristic equation has complex conjugate roots such as

$$
m=\alpha \mp i \beta
$$

then he solution of the differential equation of second order is given by

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Remember:

$$
\begin{gathered}
\text { 1) } \sqrt{-1}=i \\
\text { 2) } x=\frac{-b \mp \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

to find the roots of Quadratic equation

$$
a x^{2}+b x+c=0
$$

Examples

1- Solve the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0 .
$$

2- Solve the differential equation

$$
y^{(5)}-3 y^{(4)}+4 y^{\prime \prime \prime}-4 y^{\prime \prime}+3 y^{\prime}-y=0 .
$$

3- Solve the initial value problem (IVP)

$$
\left\{\begin{array}{c}
y^{\prime \prime}+y^{\prime}+y=0 \\
y(0)=1 \quad, \quad y^{\prime}(0)=\sqrt{3} .
\end{array}\right.
$$

Cauchy-Euler Differential Equation

A Cauchy-Euler differential equation is in the form

$$
\begin{equation*}
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+a_{0} y=0 \tag{3}
\end{equation*}
$$

where each coefficient $a_{i}, 1 \leq i \leq n$ are constants and $a_{n} \neq 0$ i.e. the coefficient $a_{n} x^{n}$ should never be zero. Equation (3) is on the interval either $(0, \infty)$ or $(-\infty, 0)$.
Euler differential equation is probably the simplest type of linear differential equation with variable coefficients.
The most common Cauchy-Euler equation is the second-order equation, appearing in a number of physics and engineering applications, such as when solving Laplace's equation in polar coordinates. It is given by the equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0 \tag{4}
\end{equation*}
$$

To solve the Cauchy-Euler differential equation, we assume that $y=x^{m}$, where $x>0$ and m is a root of a polynomial equation. Example(1) Solve the Cauchy-Euler differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0
$$

Solution We substitute

$$
y=x^{m} \Longrightarrow y^{\prime}=m x^{m-1} \Longrightarrow y^{\prime \prime}=m(m-1) x^{m-2}
$$

in the differential equation, we obtain

$$
\begin{gathered}
x^{2}\left[m(m-1) x^{m-2}\right]+a x\left[m x^{m-1}\right]+b x^{m}=0 \\
x^{m}\left(m^{2}-m\right)+a m x^{m}+b x^{m}=0 \\
x^{m}\left[\left(m^{2}-m\right)+a m+b\right]=0 \\
x^{m}\left[m^{2}+(1-a) m+b\right]=0 .
\end{gathered}
$$

Since $x^{m} \neq 0$, then we have

$$
m^{2}+(1-a) m+b=0
$$

We then can solve for m. There are three particular cases of interest: Case 1: Two distinct roots, m_{1} and m_{2}. Thus, the solution is given by

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}
$$

Case 2: One real repeated root, m. Thus, the solution is given by

$$
y=c_{1} x^{m} \ln (x)+c_{2} x^{m}
$$

Case 3: Complex roots, $\alpha \pm i \beta$. Thus, the solution is given by

$$
y=c_{1} x^{\alpha} \cos (\beta \ln (x))+c_{2} x^{\alpha} \sin (\beta \ln (x))
$$

Example (2) Solve the Euler differential equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-3 x y^{\prime}-3 y=0 \tag{5}
\end{equation*}
$$

For $x>0$.
Solution) We substitute

$$
y=x^{m} \Longrightarrow y^{\prime}=m x^{m-1} \Longrightarrow y^{\prime \prime}=m(m-1) x^{m-2}
$$

in the differential equation, we obtain

$$
\begin{gathered}
2 x^{2}\left[m(m-1) x^{m-2}\right]-3 x\left[m x^{m-1}\right]-x^{m}=0 \\
x^{m}\left(2 m^{2}-2 m\right)-3 m x^{m}-3 x^{m}=0 \\
x^{m}\left[2 m^{2}-2 m-3 m-3\right]=0 \\
x^{m}\left[2 m^{2}-5 m-3\right]=0 .
\end{gathered}
$$

Since $x^{m} \neq 0$, then we have

$$
2 m^{2}-5 m-3=0
$$

So the roots of this equation are $m_{1}=-\frac{1}{2}, m_{2}=3$.Thus, from case 1 we have the solution is given by

$$
y(x)=c_{1} x^{-\frac{1}{2}}+c_{2} x^{3} .
$$

which is the general solution.

Example (3)

Find the general of the differential equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0 \quad ; \quad x>0
$$

Solution Substituting $y=x^{m}$ in the equation, we obtain

$$
m(m-1)-3 m+13=m^{2}-4 m+13=0
$$

Then we have two complex roots $m=3 \mp 3 i$ (case 3), hence the the general of the differential equationis

$$
y=c_{1} x^{3} \cos (3 \ln x)+c_{2} x^{3} \sin (3 \ln x) \quad ; \quad x>0
$$

If we suppose $x<0$, then the general of the differential equation is

$$
y=c_{1}(-x)^{3} \cos (3 \ln (-x))+c_{2}(-x)^{3} \sin (3 \ln (-x)) \quad ; \quad x<0
$$

Example (4). Find the general solution of the differential equation

$$
x^{4} y^{(4)}-5 x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}-6 x y^{\prime}+6 y=0 \quad ; \quad x>0
$$

Solution Substituting $y=x^{m}$ in the equation, we obtain
$m(m-1)(m-2)(m-3)-5 m(m-1)(m-2)+3 m(m-1)-6 m+6=0$.
This implies that

$$
(m-1)(m-2)\left(m^{2}-8 m+3\right)=0 .
$$

The roots of this equation are $m=1, m=2$, and $m=4 \mp \sqrt{13}$, then the general solution of the differential equation is

$$
y=c_{1} x+c_{2} x^{2}+c_{3} x^{4+\sqrt{13}}+c_{4} x^{4-\sqrt{13}} ; x>0
$$

Example (5) Find the general solution of the differential equation

$$
x^{5} y^{(5)}-2 x^{3} y^{\prime \prime \prime}+4 x^{2} y^{\prime \prime}=0 \quad ; \quad x<0
$$

Solution Substituting $y=x^{m}$ in the equation, we obtain
$m(m-1)(m-2)(m-3)(m-4)-2 m(m-1)(m-2)+4 m(m-1)=0$,

$$
m(m-1)\left(m^{3}-9 m^{2}+24 m-20\right)=m(m-1)(m-2)^{2}(m-5)=0 .
$$

So the roots of this equation are $m=0, m=1, m=2$ repeated two times and $m=5$, then the general of the differential equation is

$$
y=c_{1}+c_{2}(-x)+c_{3}(-x)^{2}+c_{4}(-x)^{2} \ln (-x)+c_{5}(-x)^{5} .
$$

General Solutions of Nonhomogeneous Linear DE

Nonhomogeneous linear n-th order ODE takes the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{6}
\end{equation*}
$$

where $a_{n}(x), a_{n-1}(x), a_{1}(x)$ and $a_{0}(x)$ are functions of $x \in \mathrm{I}=(a, b)$, such that $a_{n}(x) \neq 0$ for all $x \in I$, and $g(x) \neq 0$.

Idea:

- Find the general solution y_{c} to the homogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

- Find a solution y_{p} to the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

- The general solution $y=y_{c}+y_{p}$.

Undetermined coefficients

Let us take an example

Examples

1- Find the general solution of the differential equation :

$$
\begin{equation*}
y^{\prime \prime}-y=-2 x^{2}+5+2 e^{x} . \tag{1}
\end{equation*}
$$

2- Find only the form of particular solution of the differential equation :

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}-3=3 x^{2} e^{x}+e^{2 x}+x \sin (x)+(2+3 x) . \tag{2}
\end{equation*}
$$

3 - Find the general solution of the differential equation :

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x}-3 e^{-x} . \tag{3}
\end{equation*}
$$

Variation of Parameters

This method is used to solve to determine the particular solution y_{p} of nonhomogeneous differential equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{7}
\end{equation*}
$$

If we have the nonhomogeneous differential equation

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) \tag{8}
\end{equation*}
$$

which has the particular solution

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2}
$$

where y_{1} and y_{2} are the first and the second solution of the homogeneous differential equation, respectively.

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 \tag{9}
\end{equation*}
$$

Here we will explain the method to find u_{1} and u_{2}. So, if we have $y_{1} \& y_{2}$, then we will determine as below

$$
\begin{gathered}
W\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}, \\
W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
g(x) & y_{2}^{\prime}
\end{array}\right|=-y_{2} g(x), \\
W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & g(x)
\end{array}\right|=y_{1} g(x) .
\end{gathered}
$$

Thus,

$$
u_{1}^{\prime}=\frac{W_{1}}{W}
$$

and

$$
u_{2}^{\prime}=\frac{W_{2}}{W} .
$$

Examples

1- Solve the differential equation

$$
y^{\prime \prime}+y=\csc x \quad ; \quad 0<x<\pi
$$

2- Solve the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}
$$

3- Solve the Differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+e^{-x}} .
$$

4- Find the general solution of the differential equation

$$
y^{\prime \prime \prime}+y^{\prime}=\tan x \quad ; \quad 0<x<\frac{\pi}{2}
$$

5- Find the solution of the initial value problem (IVP)

$$
\left\{\begin{array}{c}
2 x^{2} y^{\prime \prime}+x y^{\prime}-3 y=x^{-3} \quad ; \quad x>0 \\
y(1)=1 \quad, \quad y^{\prime}(1)=-1 .
\end{array}\right.
$$

