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a  b  s  t  r  a  c  t

One  of the  attractive  features  of  low-density  parity-check  (LDPC)  codes  is  the  parallel  iterative  nature
of their  iterative  belief  propagation  decoding,  making  them  amenable  to  efficient  hardware  implemen-
tation.  However,  for an  arbitrary  code  construction,  the  random-like  connections  between  the  code’s
Tanner graph  variable  and  check  nodes  makes  fully-parallel  implementation  a  difficult  task  as  this  leads
to  complex  interconnect  wiring  and  routing  congestion.  In  this  paper,  we  present  a  novel LDPC  code  design
approach,  based  on  the progressive  edge  growth  (PEG)  Tanner  graph  construction,  to  solve  the  problem
of dense  connections  between  processing  nodes.  The  approach  is  based  on  controlling  the  maximum  con-
outing congestion nection  length  between  processing  nodes  in order  to make  fully  parallel  implementation  feasible.  The
proposed  algorithm  offers  a  good  compromise  between  error  correction  performance  and  decoder  com-
plexity.  Simulation  results  and FPGA-based  implementation  comparisons  are  presented  to  demonstrate
the  advantages  of  the  proposed  LDPC  code  constructions,  and  it is  shown  that,  with  proper  window-
constrained  node  placement  design,  an  improvement  of  up  to  40%  in  interconnect  efficiency  is  achievable

egrad
without  any  significant  d

. Introduction

Forward error correcting (FEC) codes are an essential com-
onent of modern state-of-the-art digital communication and
torage systems. low density parity check (LDPC) codes, originally
ntroduced by Gallager [1], have recently found strong renewed
nterest, and are widely considered to be the leading family of
EC codes. LDPC codes demonstrate performance very close to the
nformation-theoretic bounds [2,3], while at the same time hav-
ng the distinct advantage of low-complexity and high throughput
terative decoding [4,5]. One of the main features of LDPC codes
ver other types, such as turbo codes, is the inherent parallelism
nvolved in LDPC decoding, which facilitates efficient hardware
mplementation and enables decoder throughputs much higher
han other serial decoders [7–9]. Because of these advantages, LDPC
odes have recently been considered in many communication stan-
ards, including 10 Gigabit Ethernet (10GBASE-T), digital video
roadcasting (DVB-S2), WiMAX  (802.16e), Wi-Fi (802.11n), and

0 GHz WPAN (802.15.3c) [6].

LDPC codes are linear block codes that use a sparse parity-check
atrix H [1,2]. The codes can be represented by bipartite graphs
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ation  in  error  correction  capability.
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(Tanner graphs) having two types of nodes: variable bit nodes and
check nodes, interconnected by edges. An edge indicates that a given
information bit appears in the parity check equation of the corre-
sponding check bit, as shown in Fig. 1.

LPDC code design is typically based on building a suitable H
matrix to achieve desired error correction capability. There are two
main types for LDPC code parity matrices: random-like and struc-
tured [23]. Random H matrix constructions do not impose many
constraints, and can fit quite well to the parameters of the desired
class such as code size and rate. In general, long random LDPC
codes perform better than structured LDPC codes of comparable
parameters in the waterfall region, but they do require intensive
interconnections between processing elements. On the other hand,
structured designs are more amenable to efficient implementation.

For hardware-oriented designs, there are several critical aspects
that need to be taken into account, including reduced intercon-
nect complexity, smaller die area, lower power dissipation, and
design reconfigurability to support flexible code lengths and rates
(see Refs. [10,11] and the references therein for a survey and com-
parison of the recent trends and trade-offs in hardware-oriented
LDPC design). In particular, the problem of variable–check node
interconnect complexity is of paramount importance, and this is
the focus of the present work. Reduced interconnect complexity is

crucial in achieving small-area, low-latency and high throughput
LDPC decoder implementation, because belief propagation itera-
tive decoding uses intensive message passing between the code
variable and check nodes, and long interconnect wires will be a

dx.doi.org/10.1016/j.aeue.2012.12.006
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue
mailto:aimane@kfupm.edu.sa
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consists of all check nodes reached by a tree spanning from vari-
Fig. 1. Representation of LDPC cod

ajor limiting factor in terms of power dissipation, interconnect
outing congestion, and increased delay.

In recent works, some attempts have been made to tackle the
nterconnect problem in fully-parallel LDPC decoder implemen-
ations. Approaches based on low-complexity message-passing
or reduced routing congestion in LDPC decoders and syn-
hesizing interconnect efficient schemes are discussed in Refs.
15,16]. A window-constrained node placement approach was first
ntroduced in Ref. [17]. A different approach based on bit-serial
DPC decoding is proposed in Ref. [18] to reduce the intercon-
ect complexity. Block-interlaced LDPC decoders with reduced

nterconnect complexity are presented in Ref. [19]. Quasi-cycle
DPC (QC-LDPC) codes form another class of regular structured
DPC codes built from circulant permutation matrices [24] which
ffer the advantage of low encoding complexity in addition to
artially parallel decoder implementation. Efficient implementa-
ions for high-rate QC-LDPC codes and area-efficient architectures
re described in Refs. [20,21]. However, for fully parallel imple-
entations, QC-LDPC codes do not retain the same low decoding

omplexity advantages.
In this paper, we present a different design approach suitable

or fully parallel decoding and based on “window-constrained”
ode placement using the progressive edge growth (PEG) code con-
truction technique. The PEG LDPC Tanner graph construction, first
ntroduced in Ref. [12], has many attractive features as it produces
ractical moderate-length codes with flexible parameters and a
inimized number of short cycles (which is critical for the error

orrection capability of LDPC codes). The general methodology
n Ref. [12] does not effectively address hardware implementa-
ion issues and more recent works in Refs. [13,14] present some

odified constructions to optimize the decoder hardware imple-
entation. Improvements of the PEG approach were introduced in

efs. [25,26], and designs targeting block fading channel models
ere presented in Ref. [27]. An extension of QC-LDPC codes based

n the PEG algorithm is also discussed in Ref. [28].
In our context, we specifically focus on hardware intercon-

ect congestion aspects as discussed previously, and present novel
EG-LDPC constructions based on area-constrained, windowed
ode placement. In the proposed algorithm, variable and check
odes are laid out in a two dimensional structure. The layout

mposes a maximum-size window constraint on the connections
etween variable and check nodes. This window constraint has a
irect impact on the maximum signal delay and power dissipa-
ion aspects. Performance analysis and experimental results based
n FPGA implementation show that the proposed schemes can
ffer a noticeable reduction in interconnect and routing conges-
ion, while maintaining good error performance with a negligible
NR penalty (due to the restriction of “randomness” of node inter-
onnections). The constructions also allow for design trade-offs

etween interconnect complexity and error correction capability,
s will be demonstrated in the subsequent numerical results.

The rest of the paper is organized as follows. In Section 2, the
EG construction is introduced. The proposed window-constrained
nner graph form and matrix form.

interconnect-efficient LDPC code design algorithm is then
presented in Section 3. Experimental results are discussed in Sec-
tion 4 to demonstrate the effectiveness of the proposed scheme,
and final conclusions are given in Section 5.

2. Progressive edge growth (PEG) LDPC codes

For LDPC iterative decoding based on the belief propagation (BP)
algorithm, cycles in the underlying code Tanner graph have a major
impact on the decoder error performance [2]. A cycle is a path that
starts and returns to the same node with edges in the path used only
once. For example, in Fig. 1, the path (v2 → C1 → v4 → C3) forms a
cycle of length 4.

The BP algorithm is optimum for LDPC codes constructed with
cycle-free Tanner graphs. If cycles exist, neighbors of a node are
not independent; therefore, the BP algorithm is no longer optimum
[2,4]. It is also found that the negative impact of cycles in an LDPC
code Tanner graph increases as its girth (i.e. its minimum length
cycle) decreases.

The progressive edge growth (PEG) algorithm, originally pro-
posed in Ref. [12], is an LDPC code design approach based on
maximizing the girth of the code. The PEG method is found to work
well for moderate and short length codes, and provides flexibility
in designing the code’s parameters, which is desirable for practical
applications. The PEG algorithm works by progressively establish-
ing edges or connections between variable and check nodes in an
edge-by-edge manner, while ensuring that the graph girth at each
step is as large as possible.

Formally, a Tanner graph representing an H-matrix of size M × N
is denoted as (V,E) where V is the set of graph vertices and E is the
set of graph edges. The set V is partitioned into two  sets, V = Vv ∪ Vc ,
where Vv = {v0, v1, . . . , vN−1} is the set of variable nodes and Vc =
{c0, c1, . . . , cM−1} is the set of check nodes. An edge (ci, vj) is a subset
of E if and only if hi,j /=  0, hi,j ∈ H, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1. The
set of edges E is partitioned as E = Ev0 ∪ Ev1 ∪ . . . ∪ Evn−1 , with Evj

containing all edges incident on variable node Vvj
. The kth edge

incident on vj is denoted by Ek
vj

, 0 ≤ k ≤ dvj
.

The degree of a variable node or check node is the number
of edges incident on the node. The variable degree sequence is
defined by Dv = {dv0 , dv1 , . . . , dvN−1 } in which dvj

is the degree of
variable node vj in increasing order, i.e. dv0 ≤ dv1 ≤ . . . ≤ dvn−1 . Simi-
larly for the check degree sequence Dc = {dc0 , dc1 , . . . , dcM−1 } where
dcj

is the degree of check node cj, and dc0 ≤ dc1 ≤ ... ≤ dcM−1 . Fig. 2
shows a Tanner graph example in which Dv = {2, 2, 2, 2, 3, 3, 3, 3}
and the check degree sequence is uniform with degree 5, i.e. Dc =
{5, 5, 5, 5}.

For a given variable node vj , its neighbor set up to depth l, Nl
vj

,

able node vj up to depth l. Its complementary set N̄l
vj

is defined as

Vc\Nl
vj

, or equivalently Nl
vj
∪ N̄l

vj
= Vc . To efficiently compute Nl

vj
and

N̄l
vj

, a binary flag is set for each check node. Initially, all flags are set
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ig. 2. An example of variable nodes degree sequence Dv = {2, 2, 2, 2, 3, 3, 3, 3}.

o 0. As the tree originated from node Vv proceeds to depth l, the
ndicators of check nodes included in the spanning tree are set to 1,
ndicating that these nodes belong to Nl

vj
. Likewise, all check nodes

ith flags of value 0 belong to N̄l
vj

. The PEG algorithm selects a check

ode among the nodes in the set N̄l
vj

with the maximum possible
epth l. The selected check node is the one having the smallest
egree under the current partial graph. This ensures that the PEG
anner graph has check node degrees as uniform as possible. How-
ver, other choices may  still exist because multiple check nodes in

¯ l
vj

might have the same lowest degree, particularly at the initial
onstruction step. In this case, a check node is randomly chosen
mong the lowest degree check nodes in the set N̄l

vj
. Based on the

EG algorithm, the shortest cycle passing through a new edge Ek
vj

is
 × (l + 2), since the check node ci is picked from level l + 1, i.e. the
et N̄l

vj
.

. Proposed interconnect-efficient PEG LDPC algorithm

Although the PEG construction yields good girth-conditioned
DPC codes [9], it is difficult to implement these codes using fully-
arallel architectures due to their inherent feature of maximizing
ariable and check nodes separation for the purpose of maximizing
he graph girth. Based on the PEG algorithm, when a new connec-
ion is to be added to a variable node vj , the selected check node
or connection is the one in the farthest level of the tree originated
rom the variable node vj . This results in dense and lengthy node
nterconnections (possibly exceeding those of random code con-
truction methods). In our proposed approach, the standard PEG
lgorithm is modified in a way that minimizes interconnection
engths and routing congestion with a negligible impact on the error
orrection performance, as will be explained next.

.1. Assumptions and definitions

The variable and check nodes are grouped in cells based on the
ode rate. For an LDPC code of rate 1 − p/q, cells are constructed
ith each cell having p check nodes and q variable nodes. The cells

re laid out on an X–Y grid. The 2D grid is selected for the layout
o allow for a direct VLSI placement of the cells. Fig. 3 shows a lay-
ut example of a simple (32, 16) LDPC code. This code has a rate
f 1/2; therefore, each cell contains one check node and two  vari-
ble nodes, and the cells can be laid on a rectangular X–Y grid of
ize 4 × 4. The width of the grid in which the cells are laid out is an
nput parameter to the proposed algorithm. The layout size in this
xample being 4 × 4 implies that the coordinates of a cell can take
alues from the set {0,1,2,3}. Based on the layout width, each (vari-
ble or check) node is assigned (x,y) coordinates. The assignment of
x,y) coordinates to check and variable nodes for a rate 1 − p/q LDPC
ode is done as follows. For a check node cj, the (x,y) coordinates

re given by:

x
j =

⌊
j

p

⌋
mod  width (1)
mun. (AEÜ) 67 (2013) 588– 594

cy
j
=

⌊
j

p × width

⌋
(2)

Similarly, the (x,y) coordinates of a variable node vi are given by:

vx
i =

⌊
i

q

⌋
mod  width (3)

vy
i
=

⌊
i

q × width

⌋
(4)

For the layout example in Fig. 3, the (x,y) coordinates of a check
node cj and a variable node vi are: cx

j
= jmod  4, cy

j
=

⌊
j
4

⌋
, vx

i
=⌊

i
2

⌋
mod4 and vy

i
=

⌊
i
8

⌋
.

The main objective of the proposed algorithm is to design an
interconnect-efficient LDPC code structure. To meet this, a con-
straint is set on the maximum connection length between any two
variable and check nodes. The connection length between a vari-
able node and a check node is computed based on the Manhattan
distance between the two cells in which the nodes exist. The Man-
hattan distance (˛) between a variable node vi and a check node cj
is given by:

˛(vi, cj) =
∣∣vx

i − cx
j

∣∣+
∣∣∣vy

i
− cy

j

∣∣∣ (5)

For example, in Fig. 3, the Manhattan distance between v10 and
c11 is 3. The two  nodes v1 and c0 have the same coordinates; there-
fore, the Manhattan distance between them is zero, and both v1
and c0 reside in the same cell. Finally, for each variable node vi, Si is
defined as the pool of check nodes that can be connected to vi with-
out violating a maximum Manhattan distance (˛max) constraint, i.e.
Si = {cj: given that ˛(vi, cj) ≤ ˛max}. For example, with ˛max = 2 for
the layout in Fig. 3, pools for v0 and v10 are: S0 = {c0, c1, c2, c4, c5, c8}
and S10 = {c0, c1, c2, c4, c5, c6, c7, c8, c9, c10, c13}, respectively.

3.2. Window-constrained interconnect-efficient PEG algorithm

The proposed interconnect-efficient PEG LDPC construction
algorithm is given in Table 1, and its steps are described as follows.
Initially, each check and variable node are assigned a placement
attribute based on Eqs. (1)–(4), steps 1–5. In step 6, variable nodes
are sorted according to their check nodes pool size. The sorted
list determines the order in which variable nodes are processed.
Variable nodes that have less possible connections options (usu-
ally placed near the layout grid boundaries) are given priority. For
example, in the layout of Fig. 3, |s0| = 6 while |s10| = 11. This means
that the possible check nodes that could be connected to v0 are less
than those that could be connected to v10. The remaining steps are
similar to the standard PEG approach, with the addition of maxi-
mum Manhattan distance constraint (˛max).

The purpose of step 15 is to avoid the condition when check
nodes in N̄l

vi
with smallest degree are all outside the pool of vi, i.e.

B = ∅.  In this case, we  keep incrementing the degree of the candi-
date check nodes and construct a new set (B) until B /= ∅.  Increasing
the degree of candidate check nodes has a negative impact on the
degree balance of check nodes in the resulting LDPC code. Another
solution for avoiding an empty set of candidate check nodes (B)
is to decrement the level in which check nodes are picked, i.e.
instead of picking check nodes from N̄l

vi
, check nodes are picked

from N̄l−1
vi

. However, this option has a negative impact on the error
performance since it decreases the graph girth and average cycle
lengths.

The proposed code constructions can be further improved by
imposing initial connections between variable and check nodes

that are close to each other. The initial connections can decrease
the LDPC code interconnection complexity with very minor impact
on its error correction performance. Three different variations of
initial connections are studied:
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Fig. 3. Example of a (32, 16) LDPC code layout.

Table 1
Interconnect-efficient PEG LDPC code construction algorithm.

Inputs N: number of variable nodes; M:  number of check nodes
dv: degrees of variable nodes
width: the width of the grid on which cells are placed
˛max: the maximum Manhattan distance constraint.

Output H-matrix
1. p

q = N−M
N // code rate

2.  for j = 0 to M − 1 do // perform check nodes placement

3.  cx
j
=

⌊
j
p

⌋
mod width; cy

j
=

⌊
j

p×width

⌋
4. for i = 0 to N − 1 do // perform variable nodes placement

5. vx
i
=

⌊
i
q

⌋
mod  width; vy

i
=

⌊
i

q×width

⌋
6. Sort variable nodes based on increasing order of their pool size, i.e.

|Si|
7. For each variable node vi do
8.  for k = 0 to dv − 1 do
9. if k = 0 then // special case, first connection for vi

10. A = {cw: where cw are check nodes having the lowest degree
in  Si}

11. E0
vi
← edge (cj, vi), where E0

vi
is the first edge incident to vi ,

and  cj is chosen randomly from A.
else

12. Expand a tree originating from vi up to level l under the
current partial graph. Stop expansion until one of the two
conditions is satisfied:

(a) N̄l
vi

/= ∅ but N̄l+1
vi
= ∅, or

(b) The cardinality of Nl
vi

stops increasing.
13. d = lowest check node degree in N̄l

vi

14. B = {cw: cw ⊆ N̄l
vi

, degree of cw is d, and cw ⊆ Si}
15.  if B = ∅ then increment d and goto step 14
16. Ek

vi
← edge (cj, vi), where Ek

vi
is the kth edge incident to vi and

cj is chosen randomly from B.

The LDPC codes used in the subsequent experimental results are
Initial connections-I: for each cell, connect one variable node to a
check node in the same cell. Fig. 4a shows an example for this
connection.
Initial connections-II:  for each cell, connect two variable nodes to
a check node in the same cell. Fig. 4b shows an example for this
connection.
Initial connections-III:  connect two variable nodes to a check node

in the same cell and one variable node to a check node in a neighbor
cell, as shown in Fig. 4c.
Fig. 4. Examples of different initial connections.

The proposed PEG algorithm is subsequently run to construct
the remaining connections.

4. Experimental results

In order to demonstrate the effectiveness of the proposed algo-
rithm, experiments are performed involving the construction of
LDPC codes with different maximum Manhattan distance con-
straints (˛max). Each constructed code is evaluated using two
metrics: error correction performance and efficiency of hardware
implementation. The frame error rate (FER) is selected as an error
performance metric. The hardware efficiency of the resulting LDPC
code is evaluated using two methods: by computing the maximum
and average interconnection length, and by modeling the LDPC
decoder in VHDL and implementing it on an FPGA.
rate-1/2 (1024,512) codes. The following constructions are consid-
ered:
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Table  2
Hardware interconnection and speed efficiency for different LDPC codes.

Code Maximum Manhattan
connection length

Average Manhattan
connection length

Max delay, ns
(FPGA)

PEG 43 15.9 8.866
PEG-11 11 6.2 6.717
PEG-9 9 5.2 5.936
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the percentage decrease in average Manhattan connection length
of PEG-10 LDPC codes produced with different initial connections
PEG-7 7 4.2 5.808
WM8L  27 11.4 7.064

PEG: LDPC code generated using the standard PEG algorithm of
Ref. [9].
PEG-11: LDPC code generated using the proposed algorithm with
a maximum Manhattan distance constraint (˛max) equal to 11.
PEG-9: LDPC code generated using the proposed algorithm with a
maximum Manhattan distance constraint (˛max) equal to 9.
PEG-7: LDPC code generated using the proposed algorithm with a
maximum Manhattan distance constraint (˛max) equal to 7.
WM8L: LDPC code based on non-PEG interconnect-efficient win-
dow constraint design in Ref. [4].

Table 2 shows hardware efficiency results for the differ-
nt codes. The table shows three implementation efficiency
easures: maximum Manhattan connection length, average Man-

attan connection length and maximum interconnection delay
in nanoseconds) after FPGA place and route implementation.
he maximum Manhattan distance constraint (˛max) has a direct
mpact on the propagation delay and thus speed performance of
he code implementation.

The average connection length measures the interconnection
omplexity and reflects routing congestion. It is obvious that the
tandard PEG code generated without any hardware constraint is
he worst in terms of maximum and average Manhattan connection
ength and FPGA implementation speed performance. It is also evi-
ent that the codes generated by the proposed algorithm (PEG-7,
EG-9 and PEG-11) have hardware efficiency better than the WM8L
ode.

Fig. 5 shows the error performance for the different codes using
tandard BP decoding. It is evident that the FER increases as the
aximum Manhattan distance constraint (˛max) decreases. The

EG-11 code is about 0.1 dB from the standard PEG at FER = 10−6.

Fig. 6 shows the error correction performance for the differ-

nt codes under the modified BP decoding algorithm proposed
n Ref. [22] (which implements “learning-based” tuned belief
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Fig. 5. Error correction performance using standard BP algorithm.
Fig. 6. Error correction performance using the learning-based BP algorithm of Ref.
[22].

propagation decoding). The modified BP decoding algorithm fur-
ther eliminated the slight performance gap between the PEG-11
and conventional PEG codes as shown in Fig. 8. This demon-
strates that, by using tuned decoding algorithms, the proposed
interconnect-efficient PEG constructions do not suffer any error
performance penalty, while retaining their efficiency and hardware
implementation advantages.

Fig. 7 shows the error correction performance of the proposed
algorithm for three different initial connection assumptions and a
maximum Manhattan distance constraint (˛max) equal to 10. The
PEG-10 initial-I has similar performance to PEG-10 without ini-
tial connections. As the number of initial connections increases, a
slight SNR degradation (by no more than 0.1 dB) of the resultant
LDPC code is noticed compared to the PEG-10 code without initial
connections. As the number of initial connections increases, the
average connection length decreases significantly. Table 3 shows
compared to the reference PEG-10 LDPC code generated with-
out initial connections, and it is seen that up to 43% interconnect
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Fig. 7. Performance of PEG-10 with different initial connections using standard BP
decoding.
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Table  3
Interconnect efficiency of the proposed PEG LDPC codes with different initial
connections.

Code Maximum
Manhattan
connection length

Average
Manhattan
connection length

Improvement
(%)

PEG-10 10 6.8 –
PEG-10 with initial-I 10 5.7 16
PEG-10 with initial-II 10 4.6 32
PEG-10 with initial-III 10 3.9 43

Fig. 8. Interconnection complexity for the conventional PEG code construction.
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ig. 9. Interconnection complexity for the proposed window-constrained PEG-9
ode.

eduction is achieved by imposing more initial constraints. Finally,
s an illustration of the interconnect complexity, Figs. 8 and 9 show

 comparison between the interconnection density for the uncon-
trained standard PEG code and the proposed PEG-9 code. These
wo graphs show the nodes’ interconnections after placement
before routing), and it is quite evident that the proposed PEG-9
onstruction has less interconnections density than the standard
EG code.

. Conclusion

The paper presented a new technique to address the prob-
em of interconnection complexity reduction in fully-parallel LDPC
ecoder implementation. Using the progressive edge growth LDPC

onstruction, the code variable and check nodes are initially
rouped into cells that are placed in a two-dimensional grid,
here connections between nodes are confined to a given window,

hereby imposing a constraint on the maximum inter-node span.

[
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The average connection length for the proposed designs was shown
to be reduced down to 25% of that of standard PEG codes. Error
performance simulation results of the novel window-constrained
LDPC codes showed that the error correction capability decreases as
the minimum Manhattan inter-node distance decreases. The pro-
posed algorithm was  further improved in terms of interconnection
efficiency by imposing additional short-length initial connections.
The error correction performance and hardware efficiency were
investigated with one, two  and three initial connections, and it has
been found that interconnect complexity decreases remarkably by
imposing simple initial connection constraints, with a negligible
penalty in error correction performance. It is therefore concluded
that, in addition to the maximum allowed connection length, the
number of initial connections can be used as a design parame-
ter to trade off efficiency of hardware implementation and error
correction performance.
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