On the aspects of enriched lattice-valued topological groups and closure of lattice-valued subgroups by T. M. G. Ahsanullah and Fawzi Al-Thukair

Journal Article
, T. M. G. Ahsanullah . 2021
Publication Work Type: 
Original Research Article
Magazine \ Newspaper: 
European Journal of Pure and Applied Mathematics
Issue Number: 
3
Volume Number: 
14
Pages: 
949 to 968
Publication Abstract: 

Starting with L as an enriched cl-premonoid, in this paper, we explore some categorical connections between L-valued topological groups and Kent convergence groups, where it is shown that every L-valued topological group determines a well-known Kent convergence group, and conversely, every Kent convergence group induces an L-valued topological groups. Considering an L-valued subgroup of a group, we show that the category of L-valued groups, L-GRP has initial structure. Furthermore, we consider a category L-CLS of L-valued closure spaces, obtaining its relation with L-valued Moore closure, and provide examples in relation to L-valued subgroups that produce Moore collection. Here we look at a category of L-valued closure groups, L-CLGRP proving that it is a topological category. Finally, we obtain a relationship between L-GRP and L-TransTOLGRP, the category of L-transitive tolerance group besides adding some properties of L-valued closures of L-valued subgroups on L-valued topological groups.

Attachment: